Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tritium inventory in Li2ZrO3 blanket

Identifieur interne : 000256 ( PascalFrancis/Corpus ); précédent : 000255; suivant : 000257

Tritium inventory in Li2ZrO3 blanket

Auteurs : M. Nishikawa ; A. Baba

Source :

RBID : Pascal:99-0005422

Descripteurs français

English descriptors

Abstract

Recently, we have presented the way to estimate the tritium inventory in a solid breeder blanket considering effects of diffusion of tritium in the grain, absorption of water in the bulk of grain, and adsorption of water on the surface of grain, together with two types of isotope exchange reactions. It is reported in our previous paper that the estimated tritium inventory for a LiAlO2 blanket agrees well with data observed in various in situ experiments when the effective diffusivity of tritium from the EXOTIC-6 experiment is used and that the better agreement is obtained when existence of some water vapor is assumed in the purge gas. The same way as used for a LiAlO2 blanket is applied to a Li2ZrO3 blanket in this study and the estimated tritium inventory shows a good agreement with data obtained in such in situ experiments as MOZART, EXOTIC-6 and TRINE experiments.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0022-3115
A02 01      @0 JNUMAM
A03   1    @0 J. nucl. mater.
A05       @2 257
A06       @2 2
A08 01  1  ENG  @1 Tritium inventory in Li2ZrO3 blanket
A11 01  1    @1 NISHIKAWA (M.)
A11 02  1    @1 BABA (A.)
A14 01      @1 Department of Nuclear Engineering, Faculty of Engineering, Kyushu University, Hakozaki 6-10-1 @2 Higashi-ku, Fukuoka 812-81 @3 JPN @Z 1 aut. @Z 2 aut.
A20       @1 162-171
A21       @1 1998
A23 01      @0 ENG
A43 01      @1 INIST @2 9265 @5 354000071585620090
A44       @0 0000 @1 © 1999 INIST-CNRS. All rights reserved.
A45       @0 17 ref.
A47 01  1    @0 99-0005422
A60       @1 P
A61       @0 A
A64   1    @0 Journal of nuclear materials
A66 01      @0 NLD
C01 01    ENG  @0 Recently, we have presented the way to estimate the tritium inventory in a solid breeder blanket considering effects of diffusion of tritium in the grain, absorption of water in the bulk of grain, and adsorption of water on the surface of grain, together with two types of isotope exchange reactions. It is reported in our previous paper that the estimated tritium inventory for a LiAlO2 blanket agrees well with data observed in various in situ experiments when the effective diffusivity of tritium from the EXOTIC-6 experiment is used and that the better agreement is obtained when existence of some water vapor is assumed in the purge gas. The same way as used for a LiAlO2 blanket is applied to a Li2ZrO3 blanket in this study and the estimated tritium inventory shows a good agreement with data obtained in such in situ experiments as MOZART, EXOTIC-6 and TRINE experiments.
C02 01  X    @0 001D06D04E
C02 02  X    @0 230
C03 01  X  FRE  @0 Réacteur fusion nucléaire @5 01
C03 01  X  ENG  @0 Nuclear fusion reactor @5 01
C03 01  X  SPA  @0 Reactor fusión nuclear @5 01
C03 02  X  FRE  @0 Enceinte recyclage @5 02
C03 02  X  ENG  @0 Blanket @5 02
C03 02  X  SPA  @0 Recinto reciclaje @5 02
C03 03  X  FRE  @0 Composé ternaire @5 03
C03 03  X  ENG  @0 Ternary compound @5 03
C03 03  X  SPA  @0 Compuesto ternario @5 03
C03 04  X  FRE  @0 Lithium oxyde @1 SUB @5 04
C03 04  X  ENG  @0 Lithium oxide @1 SUB @5 04
C03 04  X  GER  @0 Lithiumoxid @1 SUB @5 04
C03 04  X  SPA  @0 Litio óxido @1 SUB @5 04
C03 05  X  FRE  @0 Zirconium oxyde @1 SUB @5 05
C03 05  X  ENG  @0 Zirconium oxide @1 SUB @5 05
C03 05  X  GER  @0 Zirconiumoxid @1 SUB @5 05
C03 05  X  SPA  @0 Zirconio óxido @1 SUB @5 05
C03 06  X  FRE  @0 Inventaire @5 06
C03 06  X  ENG  @0 Inventory @5 06
C03 06  X  SPA  @0 Inventario @5 06
C03 07  X  FRE  @0 Tritium @1 SEC @2 NC @5 07
C03 07  X  ENG  @0 Tritium @1 SEC @2 NC @5 07
C03 07  X  SPA  @0 Tritio @1 SEC @2 NC @5 07
C03 08  X  FRE  @0 Méthode calcul @5 08
C03 08  X  ENG  @0 Computing method @5 08
C03 08  X  SPA  @0 Método cálculo @5 08
C03 09  X  FRE  @0 Diffusion @5 09
C03 09  X  ENG  @0 Diffusion @5 09
C03 09  X  GER  @0 Diffusion @5 09
C03 09  X  SPA  @0 Difusión @5 09
C03 10  X  FRE  @0 Adsorption @5 10
C03 10  X  ENG  @0 Adsorption @5 10
C03 10  X  GER  @0 Adsorption @5 10
C03 10  X  SPA  @0 Adsorción @5 10
C03 11  X  FRE  @0 Absorption @5 11
C03 11  X  ENG  @0 Absorption @5 11
C03 11  X  GER  @0 Absorption @5 11
C03 11  X  SPA  @0 Absorción @5 11
C03 12  X  FRE  @0 Echange isotopique @5 12
C03 12  X  ENG  @0 Isotope exchange @5 12
C03 12  X  SPA  @0 Intercambio isotópico @5 12
C03 13  X  FRE  @0 Vérification expérimentale @5 13
C03 13  X  ENG  @0 Experimental test @5 13
C03 13  X  SPA  @0 Verificación experimental @5 13
C03 14  X  FRE  @0 Li2ZrO3 @4 INC @5 72
C03 15  X  FRE  @0 Li O Zr @4 INC @5 73
N21       @1 004

Format Inist (serveur)

NO : PASCAL 99-0005422 INIST
ET : Tritium inventory in Li2ZrO3 blanket
AU : NISHIKAWA (M.); BABA (A.)
AF : Department of Nuclear Engineering, Faculty of Engineering, Kyushu University, Hakozaki 6-10-1/Higashi-ku, Fukuoka 812-81/Japon (1 aut., 2 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of nuclear materials; ISSN 0022-3115; Coden JNUMAM; Pays-Bas; Da. 1998; Vol. 257; No. 2; Pp. 162-171; Bibl. 17 ref.
LA : Anglais
EA : Recently, we have presented the way to estimate the tritium inventory in a solid breeder blanket considering effects of diffusion of tritium in the grain, absorption of water in the bulk of grain, and adsorption of water on the surface of grain, together with two types of isotope exchange reactions. It is reported in our previous paper that the estimated tritium inventory for a LiAlO2 blanket agrees well with data observed in various in situ experiments when the effective diffusivity of tritium from the EXOTIC-6 experiment is used and that the better agreement is obtained when existence of some water vapor is assumed in the purge gas. The same way as used for a LiAlO2 blanket is applied to a Li2ZrO3 blanket in this study and the estimated tritium inventory shows a good agreement with data obtained in such in situ experiments as MOZART, EXOTIC-6 and TRINE experiments.
CC : 001D06D04E; 230
FD : Réacteur fusion nucléaire; Enceinte recyclage; Composé ternaire; Lithium oxyde; Zirconium oxyde; Inventaire; Tritium; Méthode calcul; Diffusion; Adsorption; Absorption; Echange isotopique; Vérification expérimentale; Li2ZrO3; Li O Zr
ED : Nuclear fusion reactor; Blanket; Ternary compound; Lithium oxide; Zirconium oxide; Inventory; Tritium; Computing method; Diffusion; Adsorption; Absorption; Isotope exchange; Experimental test
GD : Lithiumoxid; Zirconiumoxid; Diffusion; Adsorption; Absorption
SD : Reactor fusión nuclear; Recinto reciclaje; Compuesto ternario; Litio óxido; Zirconio óxido; Inventario; Tritio; Método cálculo; Difusión; Adsorción; Absorción; Intercambio isotópico; Verificación experimental
LO : INIST-9265.354000071585620090
ID : 99-0005422

Links to Exploration step

Pascal:99-0005422

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Tritium inventory in Li
<sub>2</sub>
ZrO
<sub>3</sub>
blanket</title>
<author>
<name sortKey="Nishikawa, M" sort="Nishikawa, M" uniqKey="Nishikawa M" first="M." last="Nishikawa">M. Nishikawa</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Nuclear Engineering, Faculty of Engineering, Kyushu University, Hakozaki 6-10-1</s1>
<s2>Higashi-ku, Fukuoka 812-81</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Baba, A" sort="Baba, A" uniqKey="Baba A" first="A." last="Baba">A. Baba</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Nuclear Engineering, Faculty of Engineering, Kyushu University, Hakozaki 6-10-1</s1>
<s2>Higashi-ku, Fukuoka 812-81</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">99-0005422</idno>
<date when="1998">1998</date>
<idno type="stanalyst">PASCAL 99-0005422 INIST</idno>
<idno type="RBID">Pascal:99-0005422</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000256</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Tritium inventory in Li
<sub>2</sub>
ZrO
<sub>3</sub>
blanket</title>
<author>
<name sortKey="Nishikawa, M" sort="Nishikawa, M" uniqKey="Nishikawa M" first="M." last="Nishikawa">M. Nishikawa</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Nuclear Engineering, Faculty of Engineering, Kyushu University, Hakozaki 6-10-1</s1>
<s2>Higashi-ku, Fukuoka 812-81</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Baba, A" sort="Baba, A" uniqKey="Baba A" first="A." last="Baba">A. Baba</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Nuclear Engineering, Faculty of Engineering, Kyushu University, Hakozaki 6-10-1</s1>
<s2>Higashi-ku, Fukuoka 812-81</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of nuclear materials</title>
<title level="j" type="abbreviated">J. nucl. mater.</title>
<idno type="ISSN">0022-3115</idno>
<imprint>
<date when="1998">1998</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of nuclear materials</title>
<title level="j" type="abbreviated">J. nucl. mater.</title>
<idno type="ISSN">0022-3115</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption</term>
<term>Adsorption</term>
<term>Blanket</term>
<term>Computing method</term>
<term>Diffusion</term>
<term>Experimental test</term>
<term>Inventory</term>
<term>Isotope exchange</term>
<term>Lithium oxide</term>
<term>Nuclear fusion reactor</term>
<term>Ternary compound</term>
<term>Tritium</term>
<term>Zirconium oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Réacteur fusion nucléaire</term>
<term>Enceinte recyclage</term>
<term>Composé ternaire</term>
<term>Lithium oxyde</term>
<term>Zirconium oxyde</term>
<term>Inventaire</term>
<term>Tritium</term>
<term>Méthode calcul</term>
<term>Diffusion</term>
<term>Adsorption</term>
<term>Absorption</term>
<term>Echange isotopique</term>
<term>Vérification expérimentale</term>
<term>Li2ZrO3</term>
<term>Li O Zr</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recently, we have presented the way to estimate the tritium inventory in a solid breeder blanket considering effects of diffusion of tritium in the grain, absorption of water in the bulk of grain, and adsorption of water on the surface of grain, together with two types of isotope exchange reactions. It is reported in our previous paper that the estimated tritium inventory for a LiAlO
<sub>2</sub>
blanket agrees well with data observed in various in situ experiments when the effective diffusivity of tritium from the EXOTIC-6 experiment is used and that the better agreement is obtained when existence of some water vapor is assumed in the purge gas. The same way as used for a LiAlO
<sub>2</sub>
blanket is applied to a Li
<sub>2</sub>
ZrO
<sub>3</sub>
blanket in this study and the estimated tritium inventory shows a good agreement with data obtained in such in situ experiments as MOZART, EXOTIC-6 and TRINE experiments.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-3115</s0>
</fA01>
<fA02 i1="01">
<s0>JNUMAM</s0>
</fA02>
<fA03 i2="1">
<s0>J. nucl. mater.</s0>
</fA03>
<fA05>
<s2>257</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Tritium inventory in Li
<sub>2</sub>
ZrO
<sub>3</sub>
blanket</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>NISHIKAWA (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BABA (A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Nuclear Engineering, Faculty of Engineering, Kyushu University, Hakozaki 6-10-1</s1>
<s2>Higashi-ku, Fukuoka 812-81</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>162-171</s1>
</fA20>
<fA21>
<s1>1998</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>9265</s2>
<s5>354000071585620090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 1999 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>17 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>99-0005422</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i2="1">
<s0>Journal of nuclear materials</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Recently, we have presented the way to estimate the tritium inventory in a solid breeder blanket considering effects of diffusion of tritium in the grain, absorption of water in the bulk of grain, and adsorption of water on the surface of grain, together with two types of isotope exchange reactions. It is reported in our previous paper that the estimated tritium inventory for a LiAlO
<sub>2</sub>
blanket agrees well with data observed in various in situ experiments when the effective diffusivity of tritium from the EXOTIC-6 experiment is used and that the better agreement is obtained when existence of some water vapor is assumed in the purge gas. The same way as used for a LiAlO
<sub>2</sub>
blanket is applied to a Li
<sub>2</sub>
ZrO
<sub>3</sub>
blanket in this study and the estimated tritium inventory shows a good agreement with data obtained in such in situ experiments as MOZART, EXOTIC-6 and TRINE experiments.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06D04E</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Réacteur fusion nucléaire</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Nuclear fusion reactor</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Reactor fusión nuclear</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Enceinte recyclage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Blanket</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Recinto reciclaje</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Lithium oxyde</s0>
<s1>SUB</s1>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Lithium oxide</s0>
<s1>SUB</s1>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="GER">
<s0>Lithiumoxid</s0>
<s1>SUB</s1>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Litio óxido</s0>
<s1>SUB</s1>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Zirconium oxyde</s0>
<s1>SUB</s1>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Zirconium oxide</s0>
<s1>SUB</s1>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="GER">
<s0>Zirconiumoxid</s0>
<s1>SUB</s1>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Zirconio óxido</s0>
<s1>SUB</s1>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Inventaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Inventory</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Inventario</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Tritium</s0>
<s1>SEC</s1>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Tritium</s0>
<s1>SEC</s1>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Tritio</s0>
<s1>SEC</s1>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Méthode calcul</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Computing method</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Método cálculo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Diffusion</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Diffusion</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="GER">
<s0>Diffusion</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Difusión</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Adsorption</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Adsorption</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="GER">
<s0>Adsorption</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Adsorción</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Absorption</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Absorption</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="GER">
<s0>Absorption</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Absorción</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Echange isotopique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Isotope exchange</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Intercambio isotópico</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Vérification expérimentale</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Experimental test</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Verificación experimental</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Li2ZrO3</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Li O Zr</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>004</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 99-0005422 INIST</NO>
<ET>Tritium inventory in Li
<sub>2</sub>
ZrO
<sub>3</sub>
blanket</ET>
<AU>NISHIKAWA (M.); BABA (A.)</AU>
<AF>Department of Nuclear Engineering, Faculty of Engineering, Kyushu University, Hakozaki 6-10-1/Higashi-ku, Fukuoka 812-81/Japon (1 aut., 2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of nuclear materials; ISSN 0022-3115; Coden JNUMAM; Pays-Bas; Da. 1998; Vol. 257; No. 2; Pp. 162-171; Bibl. 17 ref.</SO>
<LA>Anglais</LA>
<EA>Recently, we have presented the way to estimate the tritium inventory in a solid breeder blanket considering effects of diffusion of tritium in the grain, absorption of water in the bulk of grain, and adsorption of water on the surface of grain, together with two types of isotope exchange reactions. It is reported in our previous paper that the estimated tritium inventory for a LiAlO
<sub>2</sub>
blanket agrees well with data observed in various in situ experiments when the effective diffusivity of tritium from the EXOTIC-6 experiment is used and that the better agreement is obtained when existence of some water vapor is assumed in the purge gas. The same way as used for a LiAlO
<sub>2</sub>
blanket is applied to a Li
<sub>2</sub>
ZrO
<sub>3</sub>
blanket in this study and the estimated tritium inventory shows a good agreement with data obtained in such in situ experiments as MOZART, EXOTIC-6 and TRINE experiments.</EA>
<CC>001D06D04E; 230</CC>
<FD>Réacteur fusion nucléaire; Enceinte recyclage; Composé ternaire; Lithium oxyde; Zirconium oxyde; Inventaire; Tritium; Méthode calcul; Diffusion; Adsorption; Absorption; Echange isotopique; Vérification expérimentale; Li2ZrO3; Li O Zr</FD>
<ED>Nuclear fusion reactor; Blanket; Ternary compound; Lithium oxide; Zirconium oxide; Inventory; Tritium; Computing method; Diffusion; Adsorption; Absorption; Isotope exchange; Experimental test</ED>
<GD>Lithiumoxid; Zirconiumoxid; Diffusion; Adsorption; Absorption</GD>
<SD>Reactor fusión nuclear; Recinto reciclaje; Compuesto ternario; Litio óxido; Zirconio óxido; Inventario; Tritio; Método cálculo; Difusión; Adsorción; Absorción; Intercambio isotópico; Verificación experimental</SD>
<LO>INIST-9265.354000071585620090</LO>
<ID>99-0005422</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000256 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000256 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:99-0005422
   |texte=   Tritium inventory in Li2ZrO3 blanket
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023